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The simple cubic nearest-neighbor Heisenberg model is discussed in one, two, and three dimensions for 
arbitrary spin. The problem of two spin deviations propagating in an otherwise fully aligned lattice is 
reduced to quadratures. The integrals relevant to the bound-state problem are examined. It is found that 
bound states exist for all spins and dimensionalities. In one dimension the results of Bethe and others are 
reaffirmed. In two and three dimensions the total momentum of a bound pair determines the number of pos­
sible bound states. For positive exchange constant and sufficiently large longitudinal anisotropy there are 
bound states of two spin waves with energies below all continuum energies. It is argued that these states 
should have a dominant influence on the low-temperature thermodynamics. 

1. INTRODUCTION 

THE Heisenberg Hamiltonian conserves the com­
ponent of total spin along the direction of the 

external magnetic field. The set of states of the system 
having an eigenvalue of this component of the total 
spin differing by a given integer, n, from the totally 
aligned value comprise an invariant sub space under the 
dynamical motion. The quantum number, n, labels the 
number of spin deviations or spin waves in the system. 

The n=0 subspace contains a single state. Bloch1 

showed that the n—\ subspace is diagonalized by a 
momentum representation. The n—2 subspace is the 
first to exhibit effects of spin wave-spin wave inter­
actions. For a one-dimensional lattice and spin S—\ 
Bethe2 solved the resulting two-particle problem 
completely. He found that in the limit as the lattice 
becomes large there exists a unique bound state for 
each value K of the total momentum of the pair. He 
did not extend his treatment to higher dimensionalities. 
Van Kranendonk3 was the first to attack the more 
general problem; however, unable to carry through 
the calculation exactly, he was forced to introduce 
approximations which misrepresented the dynamics of 
the spin system and led to erroneous results. The two-
particle problem has been discussed more recently by 
Dyson4 as a part of his monumental calculation of the 
low-temperature thermodynamics of the Heisenberg 
model. Dyson derived a bound-state condition valid at 
K=0. He verified in two and three dimensions and for 
arbitrary S that this condition is not fulfilled and went 
on to conjecture that bound states fail to exist for all K. 
We shall show below that this conjecture is false. In two 
dimensions, because of the very singular behavior of 
the relevant integrals at K=0, there exist bound states 
for arbitrarily small nonzero K. In three dimensions 
there is, indeed, a region of small K for which bound 

* Fellow of the Miller Institute for Basic Research in Science. 
i F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932). 
2 H . A. Bethe, Z. Physik 71, 205 (1931); A. Sommerfeld and 

H. A. Bethe, in Handbuch der Physik, edited by H. Geiger and 
Karl Scheel (Julius Springer-Verlag, Berlin, 1933), Vol. 24, Part 
2, pp. 604-618. 

3 J. Van Kranendonk, Physica 21, 749 (1955). 
4 F. J. Dyson, Phys. Rev. 102, 1217 (1956). 

states are absent; however, as K increases in magnitude, 
a threshold is reached above which they appear. 

The program of the present paper is to reduce the 
two-particle problem to quadratures without approxi­
mation, to pick out a bound-state condition valid for 
arbitrary K, and to analyze this condition successively 
in one, two, and three dimensions. In one dimension 
Bethe's2 results are rederived for arbitrary spin. In 
two and three dimensions contact is made with Dyson's 
discussion, as mentioned above. In a final section a 
longitudinal anisotropy is incorporated into the 
Hamiltonian and the problems associated with experi­
mental observation of the two-spin-wave bound states 
are briefly discussed. 

2. FORMULATION OF THE PROBLEM 

Consider a finite, cubic array of points, Rr, which 
may be thought of as the vertices of a lattice of unit 
spacing5 and side L. It is convenient to assume that 
the lattice has periodic connectivity, i.e., that the point 
(Ri+LRy) is identical with the point R4 for all R* and 
Ry lattice vectors. Thus, there are no edge effects and 
all lattice sites are perfectly equivalent. There are a 
total of N=Ld lattice points, where d is the lattice 
dimensionality. In the formalism to be described below 
it will prove compact to let a numerical argument 
stand for a general lattice point. 

A spin, S(l), of magnitude S is associated with each 
lattice point. These spins satisfy (in units such that 
ft=l, which will be used throughout) the usual 
rPmtiorm 

[5±(1),5»(2)]=T8(12)5±(2), (1) 

[5-(l),5+(2)]= -28(12)S«(2), (2) 

^ (1)^ (1)+5«(1) [5«(1) -1]=5(5+1) , (3) 
and 

where 
[ 5 + ( l ) ] 2 ^ = [ 5 - ( l ) ] 2 w = 0 , (4) 

S±(1) = S*(1)±;S*/(1), (5) 
5 Since the Heisenberg problem consists entirely of spins and 

has no spatial dynamics, the actual size of the lattice spacing 
enters the model only through the parameters of the spin-spin 
interaction. 
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and the arguments, 1 and 2, refer to general lattice 
points. The space of states of the Heisenberg model is 
the direct product over all lattice sites of the individual 
spin state spaces. 

The dynamics of the Heisenberg model is governed 
by the Hamiltonian 

ff=J»ES'(l)-i£J(12)S(l)-S(2). (6) 
1 1,2 

The first term represents the interaction of each spin 
with a time-independent, spatially homogeneous ex­
ternal magnetic field, the direction of which has been 
chosen as the z axis. The letter fi stands for the product 
of the spin magnetic moment and the magnitude of 
the external field. The second term is an isotropic 
nearest neighbor exchange interaction, 

J(12) = J(21) = J for 1 and 2 nearest neighbors 

= 0 otherwise. (7) 

When J>0 ( < 0 ) the system is ferromagnetic (anti-
ferromagnetic) at low temperatures. The summations 
are carried out over all lattice sites. 

I t is straightforward to verify that the spin deviation 
number operator, 

n=NS+Z$*W, (8) 
i 

commutes with H. The unique state with n—0, which 
we shall designate by |0) (normalized), is an eigenstate6 

of H with energy 

EQ=-nNS-dNJS2. (9) 

The state 10) is totally aligned: 

S ' ( 1 ) | 0 > = - S | 0 > . (10) 

When J>0 and fi>0, |0) is the ground state of the 
Hamiltonian (6). Only under these conditions are the 
states of small n of particular thermodynamical im­
portance. The normalized states of the n=l and n=2 
subspaces are now simply generated from 10): 

^ ( 1 ) | 0 ) = [ ( 2 5 ) ] ^ | 1 ) , (11) 

5+(l)5+(2) |0)=[(25)2(l+5(12))^2(12)]1 /2 |12), (12) 

where 
^2(12) = [ l - 6 ( 1 2 ) / 2 5 ] . (13) 

Here the notation 11 • • •) stands for a normalized state 
in which a unit of spin has been flipped away from total 
alignment on each of the sites 1, • • •. The normalization 

6 Note that there is perfect symmetry with respect to the 
orientation of the z axis parallel or antiparallel to the magnetic 
field. The transformation 5*(1)->-5*(1) , S+(1) <-> S~(I) pre­
serves the relations (l)-(4) and is equivalent in the Hamiltonian 
(6) to the change, /* —> —jx. We might in place of (8) have used 
the definition, n'=NS—2i Sz(l), and proceeded to work away 
from the unique state « ' = 0 (n = 2SN); however, the results 
would be entirely equivalent to using (8) with the sign of M 
reversed. 

factors can be computed from the commutation 
relations. Note that /?2(H)=:30 for 5 = J. 

Define now the one- and two-particle Green's 
functions, 

G1(l;l';l)=(-i)(0\S-(l;t)S+(V;Q)\0)r,(t), (14) 

0,(12; l'2';t)=(-iY(0\S-(l;t)S-(2;t) 

XS+(l ' ;0)S+(2 ' ;0)!0)„(*) , (15) 
where 

1 , (0=1, *>o 

= 0 , *<0 . (16) 

The standard Heisenberg time development is taken: 

S(l ; /)se**«S(l;0y-*ff«. (17) 

In what follows the time argument will frequently be 
omitted. The appearance of the TJ function implies the 
boundary condition, 

G i ( - - - ; 0 = G 2 ( - - - ; 0 = 0 , when * < 0 . (18) 

I t is instructive to exhibit explicitly the relation between 
the Green's functions and the one- and two-particle 
wave functions and matrix elements of the Heisenberg 
model. The Fourier transform of Gn, defined by 

r00 do) 
Gn(--;t) = i — * - ' " « « ( • • • ; « ) , (19) 

J-x>2ir 
has the form 

G . ( l - - - ; l ' - - - ; « ) 

y (o)-(Ey-EQ)+ie) 

where all operators are taken at 2=0 and the \y) are a 
complete orthonormal set of w-particle energy eigen-
states. The ie standing in the denominator is intended 
to suggest the operation limo<€->o and incorporates the 
boundary condition (18). The matrix elements in the 
numerator of (20) can be expressed as 

<0|S-(1) | 7 > = [ 2 S ] ^ ( 1 ) = L2SJ'%\ | T ) (21) 
and 

(0\S-(l)S-(2)\y)=l(2S)%2(12)J^y(n) 

= [(25)2(1+5(12))^2(12)]1/2<12|7). (22) 

When 6 = §, Eq. (22) does not define the nonexistent 
wave function t^ 7 ( l l ) . The wave functions are ortho-
normal according to 

E / ^ T t ( i . . . ) ^ ( i . . - ) = » » ( r y O , (23) 
i . . . 

where the prime indicates summation only over physi­
cally meaningful wave functions. The completeness 
relations are 

E , ^ t ( l ' ) ^ ( l ) = 5(11') (24) 
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and 

E^ t ( l , 20^7(12) = 5(ll,)5(22,)+5(1205(210. (25) 
7 

Equations (19)-(22) show that the functions Gi and 
G2 contain all possible information about the one- and 
two-particle subspaces. In what follows we shall com­
pute G2 by using its equation of motion, the boundary 
condition (18), and spatial periodicity, which takes the 
form 

G.(- • -Rr • •; 0 = G„(. • R*+LRy . . ; / ) , 
Rt and Ry lattice vectors. (26) 

Before embarking on the full G2 problem, let us illustrate 
the method by constructing the function Gh which will 
be a convenient auxiliary in later calculation. 

The equation of motion for S~(l) following from the 
Hamiltonian (6) is 

^ - - / x ^ - ( l ) 

+ Z / (11)[^(1)5-(1)-^(1)5~(1)] = 0. (27) 

Clearly,Gi (1 ;1') has just the form of (20). The spectrum 
(30) is just that derived by Bloch1 for single spin waves 
in an otherwise aligned lattice. 

3. SOLUTION OF THE TWO-PARTICLE PROBLEM 

We are now in a position to calculate G2. The equation 
of motion for the combination S~(l)S~(2) can be 
caclulated from (27); however, in writing an equation 
of motion for G2 the Sz's resulting from the differenti­
ation of 5"(2) must be commuted through S~(l) to 
the left, so they can project onto (0| according to (10). 
The equation of motion obeyed by G2 is 

\i 2Qi+2SdJUG2(12; 1'2') 

+SE7(11)G2(12;1'2 ') 
i 

+SZ:/(22)G,(12;1 ,2') 
5 

+/(12)G,(12;1'2') 

-8(12) E 7(11)G,(I2;1'20 

Equation (27) and the property (10) of the state |0) 
imply an equation of motion for Gi: 

^ - - M ^ G ^ l ; ! ' ) 

-5E/(H)CGi(l;l')-Gi(I;l')3 
1 

= S«(0|[5-(1))5+(1')]|0> = 255(/)5(11'). (28) 

The equivalence of the lattice points guarantees that 
Gi(l; 1/) can only depend on the coordinate difference 
(1 — 1'). The periodicity requirement (26) is incor­
porated by expressing Gi as a spatial Fourier series 
with respect to the k vectors of the reciprocal lattice. 
Once spatial and temporal transforms are taken, Eq. 
(28) is trivially soluble and the result is 

2 5 r™ do) i 
Gi(l; 1') = — £ e*'0-1 ' ' / 

-ti(k)+ie) 

where 

8(k) = 2 S / £ (1-cosfc). 

(29) 

(30) 

The sum in (29) is over the set F containing the 
reciprocal lattice vectors with components 

ki~ (2w/L)nti, i = 1, • • •, d 
nti integral: — (%L— 1) ^ mi ^ \L, L even (31) 

= (-i)(25)2[5(ll ,)5(220+5(12 ,)5(21 ,)>2(l ,2 /). (32) 

The last two terms on the left-hand side of this equation 
are a consequence of the commutation process described 
above. They make explicit reference to both the position 
1 and the position 2 and may be regarded as inter­
actions between particles whose free motion is described 
by the three preceding terms. To exploit this analogy, 
introduce the symmetrical function 

r 2 (12; l /2' ;0^G 1 ( l ; l , )Gi(2;2 / ) 
+Gi(l ;2 ,)Gi(2; l /) . (33) 

It can be verified directly that r2(12;l '2') satisfies 
Eq. (32) with the interaction terms omitted from the 
left side and the factor &2(1'2') omitted from the right. 
With the help of T2 the equation of motion (32) may 
now be transformed into an integral equation, which 
incorporates the boundary conditions through the 
structure of G\: 

Gj(12;l /2 /;/) = r2(12;l /2 /;/)A,(l /20 

2(2S)2 H f dtK2(12] l2;t-i)J(12) 

XG a ( I2 ; l / 2 ' ; i ) , (34) 
where 

K2(12;12)==r2(12;12) 
~ i [ r 2 ( 1 2 ; l l ) + r 2 ( 1 2 ; 2 2 ) ] (35) 

and the symmetry of G2 in its unprimed arguments has 
been invoked. Note the asymmetry between primed 
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and unprimed coordinates in Eq. (34).7 Had we used 
instead of (32) the corresponding equation for the 
primed indices, the analog of (34) would have had the 
opposite asymmetry. The asymmetry seems to be an 
unavoidable consequence of the spin commutation 
relation (2). 

Equation (34) can be solved by Fourier transfor­
mation. Sum and difference variables are introduced 
according to 

2 R = l + 2 , r = l - 2 
and (36) 

K = k i + k 2 , 2 k = k ! - k 2 . 

Equations (29), (33), and (35) may be combined to give 

1 
r 2 (12 ; l ' 2 ' ) = - E e*K-<R-R'> 

N K«F 

Xi — 6r**r 2 ( r ; r ' ;K ,« ) (37) 

and 

# 2 (12;1 '2 ' ) = - E e*K'<R-R'> 

with 

r00 do) 
Xi —e-

iut. 
J _oo 27T 

^ 2 ( r ; r ' ; K , o ; ) , (38) 

( -2) (2S) 2 cosk-rcosk-r ' 
r 2 ( r ; r ' ; K , o , ) = £ - — — (39) 

and 

# 2 ( r ; r ' ;K,c*) = 

N k*F0>-2ii-3(k,'K)+i6 

(~2)(2S)z 

N 

cosk • r[cosk • r'—cosiK • rH 
X E , (40) 

keF « - 2 / 4 - S ( k , K ) + i € 
where 

'5(k,K) = 0(k i )+0(k 2 ) 
= 4 5 / Zi ( l - c o s j i f c cosh), (41) 

and F denotes the set of modified reciprocal lattice 
vectors with components: 

2ki= (2ir/L)mi, i— 1, • • •, d 

-—(L—2)^Mi^L for L and LKi/2ir same 

pari ty, (42) 

- ( L - 1 ) ^ trn^ (L-1) for L and Z ^ / 2 T T 

opposite parity, 
7 For example, the S — § property, G2(12| l ' l ' ) =0 , which follows 

from (4), is clearly a property of the integral equation (34), 
through the appearance of the factor h2(l

r2'). The corresponding 
property for the unprimed coordinates, G2(l l ; 1'2') =0, is not 
manifest in (34) and depends on a complicated cancellation 
between the "free" term and the "scattering" term. This property 
does follow directly from the differential equation (32), due to a 
cancellation between the second, third, and fifth terms on the 
left-hand side. 

mi is integral and goes by steps of two between the 
limits shown. Now, G2 can only depend on the co­
ordinate differences r, r', and (R—R'). For fixed r and 
r ' the variable (R—R;) has the periodicity of the lattice, 
so G2 can be represented as 

1 r* 
G2(12;l'2') = - £ 6<K.<R-R'> / 

do) 

2rl 

XG2(r ;r ' ;K,co). (43) 

The symmetry of G2 in 1, 2, and in 1', 2' requires that 
G2(r; r ' ; K,a>) be even in r and r'. 

When the representations (37), (38), and (43) are 
substituted into (34), one finds 

G2(r ; r ' ;K,«) = r 2 ( r ; r ' ;K,w )A a ( rO 

E ^ 2 ( r ; i ; K J o ) ) G a ( i ; r ' ; K , w ) , (44) 
(2S)2 i 

where j denotes a unit lattice vector and ranges over 
the d spatial directions. If r is replaced by a unit lattice 
vector i, Eq. (44) becomes for each r', K, and co a set of 
d equations in the d unknowns G2(i; r r; K,o>). By 
reinserting the solution on the right-hand side of (44), 
we may then compute the full G2(r; r r; K,o>), from which 
the wave functions, energy eigenvalues, etc. follow by 
(43), (20), and (22). For general L and K the difficulty 
of performing exactly the summations (39) and (40) 
makes this full program unfeasible.8 

I t is useful, however, to analyze further the structure 
of the function G2(r; r ' ; K,o>) as a function of its energy 
variable, a>. If we choose to regard w as a complex 
variable, o> —-> z, the representation (20) shows that the 
poles of G2(r; r ' ; K,z) as a function of z lie on the real 
z axis at values given by the differences between the 
two-spin-wave eigenenergies and EQ. Formulas (39) 
and (40) show that the functions T2(r; r ' ; K,s) and 
i£2(r; r ' ; K,z) have poles at the energies (relative to 
EQ) of two noninteracting spin waves and are otherwise 
analytic. G2 appears to have poles both at the poles of 
the functions T2 and K2 and at the zeros of the denomi­
nator which arise in the solution of Eq. (44). These 
latter poles are located at the solutions of 

det 8(ij)-
J 

(2S) 
-K2(i;j;K,z) = 0, (45) 

where 8(ij) and K2(i; j;K,z) are regarded as dXd 
matrices in the spatial directions i, j = 1, * * *, d. A care-

8 When L is even and Ki — v, it is direct to compute G2 (r;r,m
t K,a>) 

and to carry through the program outlined. There are a total of 
liN+l-5(2S-l)l states of Ki = ir. All but d of these are de­
generate at the energy (2/x~\-4:SJd) of two independent spin waves 
of total momentum (£i)t+(&2)t = ir. The remaining d states are 
shifted down in energy by the interaction to (2/i+/(45^—1)) 
and have wave functions in which the two spin deviations are 
restricted to nearest neighbor sites. These states correspond to the 
bound states of Sec. 4. 
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ful analysis shows that the residue of G2 at many of 
the apparent poles vanishes. A more detailed discussion 
of the poles of G2 is contained in Appendix A. There 
is a close parallel in the treatment of two-particle 
scattering by a potential which can be expressed as a 
finite sum of factorizable potentials.9 For our present 
purposes it is sufficient to point out that any pole of 
G2 at the energy of two free spin waves is certainly not 
related to a bound state, so that the only poles of G2 

which can correspond to bound states are located at 
the roots of (45). The structure of (45) is analyzed in 
Appendix B. It is shown there that for given K most 
of the real solutions are interspersed between the poles, 
p/*+S(k,K)[], of T2 and K2 but that a small number of 
solutions may lie well outside these bounds. It is these 
solutions, shifted by the interaction outside the range 
of energies accessible to two free spin waves, which we 
shall identify with the bound states. 

When N becomes large (N —> oo), things are par­
ticularly clear, and it is only for this case that the 
concept of a bound state becomes entirely meaningful. 
As N —* oo y the summations in (39) and (40) may for 
certain purposes10 be replaced by integrations, 

1 1 

- £ - > -
NkeF (2TT)<* 

(dk), (46) 

where (dk) represents a ^-dimensional volume element. 
The functions T2(s) and K2(z) in this approximation 
have a cut along the real z axis, 

[2 M +S(0 ,K) ,2M+S(* ,K) ] , (47) 

and are otherwise analytic. G2(z) may have in addition 
to the cut (47) discrete poles at the solutions of (45) 
lying outside the cut.11 These solutions give the energies 
of the bound states of two interacting spin waves of 
total momentum K. In Sec. 4 we turn our attention to 
the evaluation of the bound-state condition (45). 

4. THE BOUND STATES OF TWO SPIN WAVES 
IN A LARGE LATTICE 

The bound state condition (45) may be rewritten as 

det[2S5(; i)-£2( ; j )]=0, (48) 

where K and z have been left implicit and 

B*(ij) 

with 

t=d-

1 /,7r
 t coski(coskj—aj) 

z—2fx\ 

Wo 
/ 2 - 2 / A 

\ 4S7 / 

(dk)-
o t—Yji oil co^h 

(49) 

and O r ^ - c o s p r ^ l . (50) 

9 M. Baker, Ann. Phys. (N.Y.) 4, 271 (1958). 
10 The replacement (46) misrepresents the summands of (39) 

and (40) over distances of order the reciprocal lattice spacing and 
will lead, therefore, to errors in energy shifts of order 1/N or in 
spatial wave functions over distances of order L. 

11 I t is mathematically conceivable for the residue of the full 
G2 to vanish at a zero of (45). Such a zero does not correspond to 
a two-particle energy eigenvalue. While this possibility cannot be 
excluded without more explicit calculation, it seems unlikely. 

As a function of the variable t, B2 has a cut along the 
real axis —J^iai^-t^^iai. Possible bound states lie 
on the real t axis for ^ | £«a i | . If ts(K) is a solution 
of (48) in this region for given K, then 

Eo+2M+4S/[d-fe(K)] (51) 

is the energy of a two-particle bound state of the 
Hamiltonian (6). Note that the condition (48) no 
longer depends on the exchange constant / except 
through t. For ju>0, J>0 (ferromagnetic case) E0 is 
the ground-state energy of the Heisenberg model, so 
tst^d. Our program, therefore, is to evaluate as far as 
possible the integrals (49) for t^—^iai a n d Sz a z=^ 
^d, to look for solutions, /#, of the bound-state con­
dition (48), and to use (51) to compute the corre­
sponding energy eigenvalues. Before examining sepa­
rately the various dimensionalities, d=l, 2, 3, it is 
convenient to make some general remarks concerning 
the condition (48) and the integrals (49). 

The rather cumbersome determinental condition 
(48) simplifies when all ce/s are equal, ai—a, i= 1, • • •, d. 
Under these conditions B2(ii) = B2(ll), B2(ij) = B2(12) 
for i^j, and (48) takes the form 

[2S-B2(ll)-(d-l)B2(l2)'] 
Xl2S-B2(ll)+B2(12)Jd^ = 0. (52) 

For general values of the a/s it is convenient to 
define a set of integrals, D: 

1 
Do(t) = — 

(dk) 

irdJo t—j^iaicoski 

coski 
(dk) 

1 r 
TdJ0 

1 rT cos& 
Dij(t)=DH(t)=- / (dk) : 

Wo t-'Ei 

COSkf COSkj 

(53) 

ai coski 

The function B2(ij) is now expressed as 

B2(ij) = Dij(t)-Di(t)aj. (54) 

The integrals (53) satisfy a set of sum rules, 

tDi(t) = '£jDii(t)ai, (55) 

and have simple symmetry when the sign of t is 
reversed, 

J9o(0=-^o( -0 , 
A ( 0 = A - ( ~ 0 , (56) 
Dij(t)=-Dij(-t). 

For d—1, 2 the integrals D can be evaluated in terms 
of tabulated functions. Appendix C gives a repre­
sentation of the D's as Laplace transforms of certain 
products of Bessel functions. 
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- 1 

* -a 

The bound-state condition (48) has the form, 

2Sc?(f-c?)ll*= (/~a*)[H= ( / 2 -a 2 ) 1 / 2 ] . (60) 

For t<—a (lower sign) the signs of the two sides differ, 
so (60) can never be satisfied and there are no bound 
states. When 5 = J the situation is particularly simple: 
Equation (60) yields immediately the unique solution, 

tB(K) = $(l+c?) or E = E 0 + 2 / x + | / ( l - c o s Z ) , (61) 

which is precisely the energy of the bound spin complex 
found by Bethe.2 For higher spin magnitudes and t>a, 
it is convenient to rearrange (60) as 

FIG. 1. Sketch of 
tB(a) for the one-di­
mensional lattice. 
Equation (51) gives 
the relation between 
tn and the energy of 
the bound states of 
two spin waves. C(/) = 4 S , / 2 R + a 2 ( 5 - l ) ] 
a = cospr. 

(57) 

Finally, when t is in the bound-state region, the D's 
and therefore the B2's may be written as power series 
in (ai/t), 

1 1/a* d \ a* 
B2(ij) = -+-(-+lY,<xn +0«a/tY) 

It A 8 i-i / 2t2 

+ o ( - ( a / / ) 4 ) , i=j 

=«*/ )+o((a/ty)+o(-(a/ty), 
\ 2 / 3 2/2/ \ / / 

I t follows that for ai small the solutions of (48) have 
the form 

te(K)=(l/4S)+0(ctf), (58) 

i.e., for Ki=Tr there are d bound states at the energy 
E=Eo+2/j,+J(4:Sd—• 1), in agreement with our previous 
result.8 As the Ki become different from x, deviations 
of the bound state energy go as a*2. Note that when 
the cii are near zero there are no bound states with 
negative tB, i.e., above the energy cut for 7 > 0 . 

Let us now examine the two-particle bound states 
in detail in one, two, and three dimensions. 

A. The Bound States in One Dimension 

Here an elementary integral gives 

1 
A)(0 = : 

( ^ - a 2 ) 1 ' 2 
for t>a or t<—a. (59) 

-.£t+(2S-l)c?J=Q(t). (62) 

The form of (62) guarantees that there is a unique 
solution, tB, with / > 0 for arbitrary K. The elementary 
inequalities, C(a)£Q(a) and C ( l ) ^ ( ? ( l ) , show that 
®^tB^ 1, as expected. For small o, tB has the form 

tB(K)= ( l / 4 S ) + ( 3 S - l ) o ? + 0 ( o * ) . (63) 

I t is easy to show that dtB/da—l at a = l . Note that 
the qualitative features of the curve tB(a) are inde­
pendent of 5. Figure 1 summarizes these results. The 
energies of the continuum correspond to — c e ^ / ^ a , 
so that the distance by which the curve tB (a) lies above 
the curve t—a is, except for a factor of 4S7, just the 
binding energy of the bound spin pair at the corre­
sponding total momentum, K. 

B. The Bound States in Two Dimensions 

Evaluation of the integrals D for the two-dimensional 
lattice is sketched in Appendix D. For t^ai+a2 the 
results are 

DQ(t) = kK(k)/ir(a1a2)^, 

k 
/),.(/) = - —L(t+aj)K(k) 

a»7r(aia2)1'2 

£«(<) = 
1 

- ( i + a i + o O n O S ^ f t ) ] , 

C(2-*»)X(A)-2E(*)] > 

(64) 

where 

kir (0:10:2)1/2 

4o:io:2 

f- ( a i - a 2 ) 2 

— 2a» 
ft2-— — £ 0 , /3r%2=&2, 

t—ai-\-aj 

and i, j=l, 2 with i?*j. The functions K, E, U are, re­
spectively, complete elliptic integrals of the first, second, 
and third kinds.12 Equations (56) give the integrals D 

12 Paul F. Byrd and Morris D. Friedman, in Handbook of Elliptic 
Integrals for Engineers and Physicists (Springer-Verlag, Berlin, 
1954), Eqs. 110.06-110.08. 



T W O S P I N W A V E S I N H E I S E N B E R G F E R R O M A G N E T 91 

when tS —cti—a2. Du(t) may be computed from (64) by 
use of the sum rule (55). For general a* the complication 
of the bound-state condition (48) and the integrals (64) 
makes it difficult even to estimate ts without resorting 
to numerical computation; however, certain special 
cases can be treated quite easily. These give a fairly 
clear idea of the behavior of the two-dimensional bound 
states. 

If a i = a 2 , then &2=—&, and II can be expressed in 
terms of the elliptical integral K.n The bound-state 
condition factors according to (52), giving 

25(2a2)/ ( / -2a 2) = l(2/v)K(k)-i], (65a) 

2S(2a2)/t=[(±/<jr)E(k)- ( 1 - & 2 ) ( 2 / T T ) # ( & ) - ! ] , (65b) 

where 
l^k = 2a/\t\^Q and / 2 ^4a 2 . 

The right-hand side of (65a) and (65b) are always 
positive, while the left-hand side is negative for / < 0 , 
so there are no bound states with fa<0, i.e., above the 
continuum for / > 0 . Equation (65a) has a unique 
solution for all a ^ l with 2a ̂  fa ^2. If the ansatz, 
/ = 2 a ( l + € ) , 0<e<<Cl, and the expansion14 

ir(£) = ln(4/£')+0(&'2 In*'), 

k'2=l — k2 (valid when kf is small) are substituted into 
(65a), we obtain 

€=o exp 
/ 2icSa \ 

\ l+e-J' 
(66) 

Equation (66) has a solution for arbitrarily small a. 
If we adopt as a criterion of smallness €< 1/100, then 
the final formula for fa, 

k(a)9*2d 1 + 8 exp| (67) 

is a very good approximation for a>7/ (27r5+7) . This 
result explicitly contradicts Dyson's15 conclusion that 
there are no bound states in two dimensions. By con­
trast with (65a), Eq. (65b) does not have solutions 
for a near unity. Since both (65a) and (65b) have a 
single solution of the form (58) for small a, it is of 
interest to ask—for what value of a does (65b) develop 
a solution? I t is reasonable to assert on the basis of 
physical continuity and the discussion of Appendix B 

13 P. F. Byrd and M. D. Friedman, in Ref. 12, Eq. 410.01. 
14 Herbert B. Dwight, Tables of Integrals and Other Mathematical 

Data (The MacMillan Company, New York, 1957), Eq. 773.3. 
15 F. J. Dyson, Phys. Rev. 102, 1217 (1956), after Eq. (100). 

The origin of this discrepancy is not hard to find. Dyson's Eq. 
(100) is the correct bound-state condition for K=0 , i.e., a» = l, 
for which the only possible IB is 2. For these values of a»- and tB 
the bound-state condition does, indeed, fail. The point is that the 
bound-state integrals B2(ij) are highly singular as functions of 
ai at a; = l. In particular it is clear from (49) that for t=0:1+0:2 
the B2(ij) are finite if 0:1 =0:2 = 1 but logarithmically divergent for 
all other values of ai. 

FIG. 2. Sketch of 
tB{a) for the two- di­
mensional case ai —at 
—a. The lower 
branch merges with 
the continuum at 

a =(1/25) 
X [ ( 4 A - ) - l ] . 

There are no bound 
states at negative /. 

• • a 

that at this threshold the corresponding curve fa (a) 
merges with the continuum. Equation (65b) with 
t=2a yields directly the evaluation 

) ^ a = -—( 1 J 
25\TT / 

< 1 (68) 

for the threshold value of a. The bound-state curves, 
fa (a), are sketched in Fig. 2. 

The discussion in the last paragraph was limited to 
the symmetric case a i = a 2 . Solution is also possible in 
certain limiting cases for a^a2. When ai is small, the 
expansion (57) gives 

1 /5S-1\ 
fa = —+[ ) ( a 2 i + a 2

2 ) ± | C ( 5 - l )* (a i*+« 
45 \ 2 / 

1)1 

+ 1 2 5 ( 5 5 - l ) a iW] 1 / 2 +0(a t -
4 ) . (69) 

The ansatz / = (a1+a2) (1+e), 0<e<<Cl, makes the 
argument k of the various elliptic integrals appearing 
in the D's near one. Then the standard expansions13,16 

in kf2=l—k2 allow derivation of a self-consistent 
equation for e similar to (66) but with a rather com­
plicated argument for the exponential. This equation 
has a solution for a{ arbitrarily close to 1. The analog 
to (67) for a^a2 is rather messy; however, for a^l 
it assumes the simple form 

r / ( 2 T T ) ( 2 5 ) \ - 1 
fa(aha2)^(a1+a2)\ 1 + 8 expf J , (70) 

which reduces to (67) in the appropriate limit. 
Finally, when a 2 = 0 , it follows that D2(t) — Dn{t) = Q 

and D22(0 = i#oOO, so the bound-state condition (48) 
factors: 

[ 2 5 - J 3 2 ( l l ) ] [ 2 5 - § P 0 ( * ) ] = 0 . (71) 

The first factor gives a bound state of precisely the 
one-dimensional form, (61); the second leads to 

tB(aifi) = +L(4S)-*+ahyi*. (72) 

16 H. B. Dwight, Ref. 14, Eqs. 773.3 and 774.3. 
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[i+(4srf 
FIG. 3. Sketch of 

tB(aifl) for the two-
dimensional lattice. 
There are two bound 
states for each value 
of a\. 

Figure 3 depicts these results. There are no bound 
states for t<0. The situation is, of course, entirely 
similar when G ^ O ? ^ . 

When ai and a2 are near zero, there are two bound 
states; when ax and a2 are near unity, there is one. 
Without examining the bound-state condition (48) for 
arbitrary «i and a2, it is impossible to conclude with, 
complete rigor that there are always either one or two 
bound states; however, on the basis of the special cases 
which can be simply solved, it seems reasonable to 
conjecture that this is so. I t then becomes of interest 
to plot in the ah a2 plane the threshold for the appear­
ance of the second bound state. The assumption [ c i , 
the derivation of (68)] that the second bound state 
merges with the continuum at threshold associates the 
argument k=l with the integrals (64) at threshold. 
As k —> 1, the functions K(k) and II(ft2,£) are singular16 

as ln(l — k2). When (48) is multiplied out, the terms 
quadratic in the singularity cancel. The condition for 
a bound state at the edge of the continuum is, therefore, 
that the coefficient of the remaining logarithmic singu­
larity should vanish. This leads to the equation 

r r 7i 

« s — + -
a i l 

( a i+«2—ai 2 )+Y2— (1—0:2) 
CL\ at a2A 

r r 72 a2~\ 

TS +—(ai+a*-ctf)+7r- (l-ai) = 0, (73) (X2 « 2 a i -

where 

and 

1/2 r = (a1/a2)
ll2+ (a 2 /« i ) 

ji= sin-1^*/ (a1+a2) )1 /2 . 

The solutions of (73) include the threshold points 
already shown in Figs. 2 and 3. Near cei=l, a2—0 the 
curve (73) has the form 

a2^(4/3irS)2(i~~a1)\ (74) 

Figure 4 shows the threshold curve for the two-dimen­
sional bound states. 

In the special cases treated exactly there have been 
no bound states with / < 0 . Probably such bound states 

do not exist; however, a more careful discussion of (48) 
for arbitrary a{ would be necessary to decide this point 
with certainty. 

C. The Bound States in Three Dimensions 

The integrals D appropriate to the three-dimensional 
lattice are not to the author's knowledge available in 
analytic form for arbitrary values of the parameters t 
and oLi. Evaluations have, however, been carried out 
for certain special values of the parameters,17 and these 
will suffice for us to form a good qualitative picture of 
the number and behavior of the bound states. 

When ai=a, the integrals D of (53) all have the 
simple property 

D(tp)=(l/a)D(t/a,l). (75) 

Equations (52), (54), and (55) then give the bound-
state conditions, 

f S a = (t/3a)D1(l/a,l)-Dl2(t/a,l), (76a) 

%Sa = (t/3a-a)D1(t/a,l). (76b) 

The condition (76a) appears as a quadratic factor in 
(52), so its solutions are related to doubly degenerate 
bound states. Condition (76b) is nondegenerate. I t is 
easy to show that for /g:3a, Z)i( / /a , l )>0. Dyson17 

uses an ingenious electric circuit analog to demonstrate 
further that 0<Di(t/a,l)-D12(t/a,l)<^. These in­
equalities and use of (56) prove that bound states do 
not exist for t^—3a. According to the discussion after 
(51), bound states with / > 0 must lie in 3^t^3a. In 
particular, as a—» 1, only t—>3 is possible. The con­
dition (76b) is obviously not satisfied for a= 1. Dyson's 
inequality shows that (76a) also fails. Therefore, there 
do not exist bound states of two spin waves with K = 0 
in three dimensions. The integrals D defined by (53) 
are in three dimensions perfectly continuous functions 
of their variables, t and a»-, for t^Ziai. I t follows that 
there exists a finite region around K = 0 (« j= l ) for 

FIG. 4. Sketch of 
threshold for the ap­
pearance of the sec­
ond bound state for 
each K for the two-
dimensional lattice 

17 G. N. Watson, Quart. J. Math. 10, 266 (1939), computes D0 
for ai = \=it. F. J. Dyson, Ref. 15, Eq. (89) and after Eq. (100), 
obtains useful inequalities for ai = 1, / ^ 3 . J. G. Hanus, in Quarterly 
Progress Report, Solid State and Molecular Theory Group (MIT), 
43, 96 (1962), tabulates the equal on case for selected values of t 
and gives further references. He works from the Laplace transform 
representation (see Appendix C). 
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which there are no bound states.18 Dyson4 recognized 
this but went on to conjecture incorrectly that there 
were no bound states for arbitrary K. Equation (58) 
and footnote 8 already show that such bound states do 
exist for small ait The threshold for their appearance is 
easy to compute when ai=a. As in two dimensions the 
bound states are expected to merge with the continuum 
at threshold, so we look for solutions of (76) with t=3a: 

| S , a=Di (3 , l ) -D i2 (3 , l ) = 0.0618, 

| 5 a ( l - a ) = Z>i(3,l) = 0.1721, 

(77a) 

(77b) 

where Hanus'17 values have been used for the integrals. 
I t is direct to compute threshold values of a from Eqs. 
(77). For S= \ the thresholds correspond to i£;=159° 
(doubly degenerate) and i ^ = 1 4 0 ° (nondegenerate). 
These values agreed with those obtained by Hanus19 

in an analysis somewhat less direct than ours and 

FIG. 5. Sketch of 
IB{CX) for the three-
dimensional lattice 
and on =a. The lower 
curve is doubly de­
generate. Threshold 
values of a are given 
by (77). 

*-a 

restricted to S= J, d = 3. Figure 5 shows the bound-
state behavior for at=a. 

The three-dimensional analog of (69) for sma]l af 

follows from (57). The resulting cubic equation has 
three solutions of the form (58). There are no solutions 
with / < 0 . 

Finally, when one of the ce/s vanishes (i.e., on one 
of the faces of the K cube), the bound-state condition 
(48) factors in analogy to (71) into a two-dimensional 
and a one-dimensional part. If, for example, a 3 = 0 , the 
two-dimensional part gives just the bound states of 
Sec. 3B. In addition to these there are bound states at 
the solutions of 4S ,= A>(0, with D0(t) given by (64). 

18 Note that the singularity of the integrals D in two dimensions 
as t —>aiJra2 makes this argument inapplicable. See footnote 15. 

19 J. G. Hanus, in Quarterly Progress Report, Solid State and 
Molecular Theory Group (MIT), 43, 96 (1962); 44, 38 (1962); 
and 46, 137 (1962). Hanus works from a Schrodinger equation 
and introduces a Green's function similar to our Gi only as an 
auxiliary. The first paper treats the spin-wave interaction in­
correctly. This error is rectified in the second. 

FIG. 6. Three-di­
mensional bound-
state behavior for 
a.i=a.2—a and 0:3—0. 

'-*-a 

I t is easy to verify that this condition leads always to a 
unique bound state with t>ai+a2. In particular for 
a 1=a2 = 1, the corresponding tB solves 4:Sw = (2/t)K (2/t), 
so £ B > 2 . In Fig. 6 the situation is pictured for 
a1—a2=a1 a 3 = 0 . 

Complete solution of the three-dimensional bound-
state problem depends on evaluation of the integrals D 
for arbitrary ait The special cases considered above do, 
however, provide a solid basis for speculation con­
cerning the qualitative features of the full solution. 
There appear to be no bound states with /<0.2 0 The 
a cube, O ^ a ^ l , seems to be divided into four regions, 
according as there are 0, 1, 2, or 3 bound states with 
/ > 0 for each, corresponding value of the total mo-

(0,1,1) 

(0,0,1) 

(0,0,0) 

(U, l ) 

(U,0) 

(1,0,0) 

FIG. 7. Threshold surfaces in three dimensions, as they intersect 
the faces of the a cube. Numerals on the cube faces indicate the 
number of bound states for each set of (0:1,0:2,023) in the corre­
sponding regions. 

20 Hanus (Ref. 19) in his first paper claims to find bound states 
symmetrically above and below the continuum. He bases his 
argument on the "invariance of the trace of the interaction." I t 
is hard to see how such an argument can (as his seems to) be 
independent of the phase shifts in the continuum. The present 
author believes that he has simply misrepresented the reflection 
properties (56) of the integrals D. In any case our calculations do 
not corroborate his conclusion. 



94 M I C H A E L W O R T I S 

mentum of the bound pair. Figure 7 shows a sketch of 
the intersections of the threshold surfaces denning 
these regions with the faces of the a cube and is the 
three-dimensional analog of Fig. 4. The analysis leading 
to Fig. 5 suggests that the two surfaces closest to 
ai=a2—a3=0 are tangent at the diagonal point 
ai = a2=a8= (1/25) (0.1854). 

5. CONCLUSIONS 

For a large, isotropic, ^-dimensional, cubic Heisen-
berg model there may exist 0, 1, • • •, d bound states 
of two spin waves, where the precise number depends 
in a complicated way on the total momentum of the 
bound pair. When J and /x are positive, so the states 
with small numbers of spin waves may be expected to 
be thermodynamically important at low temperatures, 
the bound states have energies below the two-particle 
continuum. Larger values of the total momentum favor 
larger numbers of bound states and larger binding 
energies relative to the continuum.21 In particular for 
d=3, there are no bound states for total momenta that 
are sufficiently small. Even in two dimensions, where 
there are bound states for arbitrarily small K, the 
corresponding binding energies go to zero exponentially 
with K [see Eq. (67)]. The qualitative features of the 
bound-state behavior are independent of the magnitude, 
S, of the individual spins. 

Experimental observation of the bound states of two 
spin waves in materials well described by an isotropic 
Heisenberg model does not appear easy. Let us confine 
our remarks to the three-dimensional case with / , /x>0, 
although experiments on thin films and chains are also 
conceivable. The present calculations have treated two 
spin waves in an otherwise aligned lattice. I t is plausible 
to hope that at sufficiently low spin-wave densities, 
i.e., at sufficiently low temperatures, the spin waves 
will continue to exhibit predominantly single-particle 
and pair characteristics, so our treatment will remain 
accurate.22 Dynamical experiments such as spin-wave 
resonance23 and inelastic ferromagnetic neutron scat­
tering24 typically couple to single spin waves. Thus, 
such a process as creation of a bound pair either is of 
second order, and therefore, weak or must proceed via 
a spin wave already in the continuum, which makes 

21 The dependence of the number and binding energy of the 
bound states on the total momentum is a result of the discrete 
nature of the lattice and the consequent lack of invariance of the 
problem under continuous translations. 

22 Note that even at low densities the possibility of important 
corrections due to bound triplets, etc., cannot be rigorously 
excluded without examination of the three-particle problem, and 
so on. At temperatures near or above the Curie point, where 
roughly half the spins in the system are flipped, it seems likely 
that many particle effects will predominate and that the present 
discussion is entirely inapplicable. 

23 See, for example, P. E. Tannenwald, J. Phys. Soc. Japan 17, 
Suppl. B-I, 592 (1962) and R. Kimura and H. Nose, ibid., 604 
(1962). These authors give further references. 

24 See, for example, R. N. Sinclair and B. N. Brockhouse, Phys. 
Rev. 120, 1638 (1960). 

analysis difficult. Alternatively, direct measurement of 
the low-temperature thermodynamics is quite feasible; 
however, the absence of bound states with small K 
means that there are continuum states lower by a 
finite energy gap, 5, than the lowest bound state. The 
effect of the bound states on the thermodynamics is, 
therefore, exponentially small with e~P8. 

These difficulties may not be insurmountable, but 
the situation is much simpler if one studies materials 
with a highly anisotropic exchange coupling. Consider, 
instead of the isotropic Hamiltonian (6), 

H=» Z S'(l)-i E J(12)IS'(1)S'(2) 
1 1,2 

+aS+(l)S~(2)-]. (78) 

The Hamiltonian (78) incorporates an anisotropy 
parameter, o-^O. Isotropy corresponds to <r=l. The 
following discussion may be motivated by the obser­
vation that when c = 0 , the Heisenberg model'reduces 
to the Ising model, for which the bound states are 
always below the (degenerate) continuum. Notice that 
for 1^<7^0 and J, fi>0 the fully aligned state is still 
the ground state. All the machinations of Sees. 2 and 3 
go through just as before, only with factors of a inserted 
at appropriate places. In particular, it is direct to verify 
that Gi ( l ; 1') is still given by (29), if in place of (30) 

d 

Q(k) = 2SJj: (1-trcos*,-), (79) 
4 = 1 

is used as the single-particle spectrum. Similarly, the 
integral equation (34) for G2 remains valid, if the 
definition (35) is changed to 

Z 2 (12;12) = r 2 (12 ;12) 

- |<7[ r 2 (12 ; l l ) + r 2 ( 1 2 ; 22)] (80) 

and the correct Gi is used in the evaluation (33) of F2. 
The net effect is that Eq. (44) still gives G2(r; r ' ; K,co), 
if the terms cos(^K»r') and cos (\K^) appearing in the 
definitions (39)-(41) are multiplied by o\ The whole 
discussion of the bound states in Sec. 4 can then be 
carried over by simply changing the definition of a, 
from (50) to 

a^acos^Ki), O^a^a. (81) 

Each of Figs. 1-7 is still correct; however, physical 
values of a4 are no longer O g a ^ l but are given by 
(81). In the Ising limit, c = 0, Eqs. (58) and (51) show 
that there are always Abound states degenerate at 
the energy Eo+2ix+J(4:Sd— 1), which is a trivial direct 
consequence of the Ising Hamiltonian. 

Notice from Fig. 1 that for 0 ^ o - < l the one-dimen­
sional bound-state curve never touches the continuum. 
For S= J, (51) and (61) give the bound-state energies 
as 

E^Eo+2fi+2SJll-(72 c o s 2 ( p Q ] , (82) 
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which has been obtained by Orbach.25 Figure 4 shows 
that in two dimensions when 0^o-rg(l/2S)(4/7r—l) 
there are two bound states for each value of the total 
momentum. 

In three dimensions for the phsyically interesting 
case J, ju>0 Eq. (77b) shows that for 

0 ^ < T < 0 . 5 1 6 3 / (25+0.5163) (83) 

there will be a bound state of K=0 with energy lower 
than any continuum energy. For such an anisotropy 
the bound states will play a predominant role in deter­
mining the low-temperature thermodynamics, while 
the effect of the continuum states will be exponentially 
small as T—»0. Under the pairing assumption22 the 
characteristics of the two-particle bound-state spectrum 
should then be readily observable experimentally. 
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APPENDIX A: THE POLES OF G2 

Because Eq. (44) does not mix different total mo­
menta, it will be convenient to suppress explicit 
reference to K in what follows. Formulas (39) and (40) 
show that r2(r ; r ' ;3) and i£2(r;r';z) regarded as 
functions of z are analytic everywhere except for a 
finite set of simple poles located on the real axis at the 
distinct values assumed by (2/x+S(k,K)) as k runs 
over the N modified reciprocal lattice points (42) with 
K fixed. Denote these poles by con

(0). If Yw(r;r') and 
&„(r;r') are the residues of r2(z) and #2(2), respec­
tively, at s=con

(0), then 

_Yn(r;rO 
r 2 ( r ; r ' ; s ) = i : 77, (Al) 

n z-wjv 
£n(r;r') 

^ 2 ( r ; r ' ; s ) = Z - . (A2) 

Equation (20) guarantees that a similar representation 
exists for the function G2(z) 

gn(r;r') 
ft(r;f;£)=i; - , (A3) 

n z-o)n 

where a>» are the true two-particle energy eigenvalues, 
which do not, in general, coincide with the wn

(0), and 
gn(r;rr) are the corresponding residues. Assume that 
one of the true two-particle energies falls at an un-

2* R. Orbach, Phys. Rev. 112, 309 (1958). 

perturbed energy, so cowt=com
(0). If (A1)-(A3) are 

substituted in the right-hand side of (44), the second 
term appears to give a second-order pole in G2(r; r '; z) 
at 2=com

(0), which contradicts (A3). The condition that 
this contradiction should not occur is 

Z y ^ ( r ; i ) ^ ( i ; O = 0. (A4) 

Since (A4) must hold for arbitrary r, it follows that 
either gm(j; r') = 0 or every dXd submatrix of km(r; j) 
is singular. Assume for the moment that km(r;j) has 
at least one nonsingular dXd submatrix, so gm(j; r') = 0. 
Then the value of gm(t'y r') can be constructed entirely 
from km(t; j) and ym(r; rr). To do this, notice that the 
part of (44) singular at s=com

(0) reads, 

gm(r;r0 = 7m(r;r,)fe(r/) 

+7—Z^( r , i )G 2 ( i ; r ' ; co w (o ) ) . (A5) 
(2sy i 

When r= i , the left-hand side vanishes and (A5) can 
be inverted to give G2(j;r';a>m

(0)). The resulting ex­
pression reinserted in (A5) evaluates, 

gm(r;r')==[7m(r;r') 
- L t i km(r; i)k^{i; j)ym(j; r')]fe(r'), (A6) 

where knT1^; j) is the matrix inverse of the dXd 
matrix km(i; j). We are now in a position to draw two 
conclusions: (i) If km(x,j) has a nonsingular dXd 
submatrix and the right-hand side of (A6) vanishes, 
then G2(r; r'; z) certainly does not have a pole at com

(0) 

and (ii) if km(t;j) has a nonsingular dXd submatrix 
and the right-hand side of (A6) does not vanish or if 
km(i', j) is entirely singular, then G2(r; r'; z) may have 
a pole at cow

(0). Examples will be given in what follows. 
Consider the one-dimensional case. Here (41) shows 

that except for the special case8 K—ir there is a unique 
unperturbed energy, cofc(0), for each value of the mag­
nitude of k. Thus, 

(-2)(2Sy 
7 k {y; ff) ~ m coskr coskr' (A7) 

N 
and 

(-2)(2Sy 
kk(r;r') = — m coskr (coskr' — cos^Kr'), (A8) 

N 

where the multiplicity, m, is two or one depending on 
whether the particular k in question does or does not 
have a reflection in the modified zone (42). So long as 
2k 5* K, it is easy to verify that the hypotheses of 
conclusion (i) are satisfied and G2(z) has no poles at 
[2fx+S(k,K)li. When 2k=K, every component of 
kk(r,i) vanishes, and (44) shows that G%(z) does indeed 
have a pole at [2/x+S(§iT,iO]. In the special case8 L 
even, K=ir, T2(z) and K%(z) each has a single pole at 
(2JLI+457). Expressions (A7) and (A8) no longer hold. 
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One finds that yn and kn are diagonal in the magnitudes 
| r\ and | rf | ; therefore, the right-hand side of (A6) 
vanishes for M ^ k ' l a n d for 1̂ 1 = 1̂ 1 = 1, the 
hypotheses of (i) apply, and the corresponding G^zYs 
do not have poles at (2/X+4ST). When | r | = | f ' | 7^1 , 
the right-hand side of (A6) is nonvanishing, and G2(z) 
may by (ii) have a pole at (2/*+457). Examination of 
(44) shows that this does happen. 

The higher dimensionalities are more difficult to 
analyze, since (41) no longer allows assignment of a 
unique cow

(0) for each | k | . This added possibility for 
degeneracy makes it hard to exhibit the residues, yn 

and kn, explicitly. In any case, it is clear that as N —» <*> 
any poles of (^(z) at cow

(0) cannot lie outside the con­
tinuum ; therefore, only solutions of (45) can contribute 
bound states. 

APPENDIX B: THE STRUCTURE OF 
EQUATION (45) 

Consider first the one-dimensional problem, which 
will exhibit all of the qualitative features of the more 
general problem. The characteristics of the function 
l\J\/(2S)2]K2(l;l;Ki<a) may be read off from (A2) 
and (A8). There are a set of simple poles at the values 
co=cofc(0) = 2/x+45y(l-cos£; cospQ. The residue at the 
pole co&(0) is positive when 0 < cos& < cos|i£, zero when 
cos&=0 or cos&=cos|i£, and negative when cos£<0 or 
cos&>cos|iL Figure 8 shows a typical sketch of 
[J"/(25)2]iT(co), J > 0 , plotted as a function of the real 
variable co. All but one of the solutions of (45) lie 
between the various poles, COA;(0). Only the leftmost 
branch of the curve contains a solution outside of these 
values. As L —> <x> the solutions between the cofc(0) 

merge into a continuum; however, the left-most solu­
tion may (and does, in this case) remain separated 
from the continuum by a finite gap. This represents 
the effect of the two-particle interaction in splitting off 
a bound state from the continuum. 

|2gpK2(l;l;M 

FIG. 8. Sketch of [//(2S')2]Z2(1; 1; J S » for 7 > 0 . Numbers 
used are £ = 24, LK/2ir = 2. Dashed vertical lines indicate energies 
of two free spin waves. Depending on the location of unity on the 
vertical scale, the condition (45) may have one solution well below 
the continuum. 

The extra matrix complexity of (45) for higher 
dimensionalities does not change the main conclusion: 
Most of the solutions of (45) lie between the unper­
turbed energies oon

(0) and, in the limit N—•» oo, merge 
into a continuum; however, a small number lie outside 
the range of values bounded by the con

(0) and, as N —> °°, 
may continue to exist as isolated poles of Gi outside the 
continuum. 

APPENDIX C: REPRESENTATION OF 
THE D FUNCTIONS 

For values of t above the cut, t^Yliab the repre­
sentations 

and 

1 /•« 

aicoskj, 7o 
dp e x p [ ~ (t-Y,i ai coskt)p2 (CI) 

1 r* 
In(p)'=- / da epG08a cosna, 

7T J 0 
(C2) 

where In(p) is the Bessel function of imaginary argu­
ment of nth order,26 allow the integrals (53) to be 
written, 

A , ( 0 = f dpe-tpRIoiatp), (C3) 
. ' o i 

Dt(t) = f dp e-^hiaiP) I I h(aip), (C4) 

DiS) = / dp e-**h[h(pLiP)+h(aipy\ I I h(*ip), (C5) 

D*(t)= [ dpe-^hiaShiajp) U hipnp), 
J a i9*i,i*j 

i^j. (C6) 

When / is below the cut, t^— Y,i<xi, the reflection 
properties (56) determine the values of the D's. 

APPENDIX D : EVALUATION OF THE D FUNCTIONS 
IN TWO DIMENSIONS 

I t is more than likely that the integrals (53) have 
been evaluated either directly or in the representation 
of Appendix C; however, the present author was unable 
to find such an evaluation except for special cases. He, 
therefore, feels that it may be useful to sketch a program 
by which these integrals may be reduced to more 
familiar forms. 

26 H. B. Dwight, Ref. 14, Eq. 813.3, and Wilhelm Magnus and 
Fritz Oberhettinger, Formulas and Theorems for the Functions of 
Mathematical Physics (Chelsea Publishing Company, New York, 
1954), p. 26. 
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Use the form (53) and assume t^a1-jra2. I t is always 
easy to integrate over one component of k, say k2, by 
use of the formula, 

1 r r cosnki (%—(x2—\)ll2)n 

- / dk2 = . (Dl) 
Wo 00— C0S&2 (#2—-1)1/2 

Those of the resulting integrals which are not trivial 
may be transformed by the substitutions, 

k\=T—26 , 

2ai 2ai (D2) 
0 ^ W 2 2 = S ^ = W l 2 ^ 1 , 

INTRODUCTION 

MAGNETO-OPTICAL phenomena involving 
changes in the state of polarization of a wave, 

such as the Faraday or the Voigt effects, have recently 
received much attention as experimental tools for in­
vestigating transport properties of semiconductors. In 
this article, we analyze the magnetic-field dependence of 
the total absorption associated with the above phe­
nomena, in the attempt to see what further information 
can be obtained by measuring transmitted amplitude as 
a function of the field. I t will be shown that the effect 
provides a means of investigating the magnetic-field 

* Initial work supported by the Advanced Research Projects 
Agency through the Northwestern University Materials Research 
Center. 

t Supported by the U. S. Air Force Office of Scientific Research. 

into expressions of the type, 

2 /•*'* (sintf)2" 
- / dd — , 
T J o [ (1 - ft!2 sin20) (1 - n2

2 sin20)]1/2 

v integral, (D3) 

times certain factors involving the ah These integrals 
in turn yield to the elliptic substitution,27 

(\-n2
2) sin20 

sn2^= , (D4) 
1 — n2

2 sin20 
giving the results (64). 

27 P. F. Byrd and M. D. Friedman, Ref. 12, Eqs. 284, 336, and 
337. 

dependence of the diagonal component of the con­
ductivity tensor, and represents in fact a modified high-
frequency version of magnetoresistance. The changes in 
the amplitude of the transmitted wave can be quite 
pronounced in the free-carrier region and, in general, 
involve simple measuring techniques. I t is thus worth­
while to consider the effect as a useful high-frequency 
method for the study of galvanomagnetic properties. 

We will first outline a plane-wave semiclassical analy­
sis of the case when an initially linearly polarized wave 
travels along the direction of an applied magnetic field. 
This situation gives rise to the Faraday effect, and will 
be referred to as the Faraday configuration. We will 
then consider the case of propagation transverse to the 
applied field, i.e., the Voigt configuration. Results of 
some microwave and infrared experiments carried out 
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A plane-wave semiclassical analysis of the amplitude of an electromagnetic wave transmitted through a 
semiconductor in the presence of a magnetic field is discussed and some theoretical predictions are compared 
with experimental measurements. The Faraday and the Voigt configurations, longitudinal and transverse, 
respectively, are specifically considered. The theoretical results, obtained formally in terms of the high-
frequency conductivity tensor, are applied to the isotropic, one-carrier semiconductor model. The general 
expression, covering all ranges of frequency and magnetic field within the extent of validity of the model, 
is derived and reduced to simple forms applicable to specific experimental situations. The problem is then 
generalized to ellipsoidal surfaces of constant energy, and to systems involving more than one type of carrier. 
Results of room temperature microwave experiments carried out in the Faraday configuration on silicon 
and germanium show, in general, good agreement with the theoretical analysis. Effects of magnetodichroism, 
observed in w-type silicon in this configuration, are reported. It is finally noted that the theoretical analysis 
of the Voigt configuration predicts the major features of the line shapes observed in far infrared experiments 
by other workers. 


